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Abstract. Cancer has become the leading cause of death for Americans. The
development of prognostic tools could have immediate impact on the lives
of millions of cancer patients. We have developed an integrated model that
includes a cellular model for cell dynamics (cell growth, division, death, and cell
adhesion), an intracellular protein regulatory network for cell cycle control, and
extracellular reaction-diffusion chemical dynamics. This model has produced
tumor growth dynamics that agree with tumor spheroid experiments. The
model has the potential to be a comprehensive and predictive model for tumor
development and chemotherapy based on quantitative experiments.

1. Introduction

Since 2002, cancer has overtaken heart diseases and become the leading cause of
death for Americans between the ages of 40 and 74 [1]. But the overall effectiveness
of cancer therapeutic treatments is only 50%. Understanding the tumor biology and
developing a prognostic tool could therefore have immediate impact on the lives of
millions of people diagnosed with cancer.

Tumor development is very complex and dynamic. The microenvironment in-
side a tumor, which determines tumor dynamics, involves spatial and temporal
variations in nutrient and waste gradients, cellular physiology and viability, energy
and macromolecule metabolism, the expression patterns of genes and proteins, as
well as the progression of the malignant process. The interplay amongst all of
these elements defines the response of a particular tumor to any form of treat-
ment from surgery to the newest wonder drug. Mathematical models based on the
underlying tumor growth mechanisms can help the scientific and medical commu-
nity understand and predict the development of a tumor in different environments
and evaluate the potential effectiveness of different approaches for controlling the
disease.

The complexity of a tumor in vivo has resulted in the development of simpler
in vitro experimental models of the tumor microenvironment; the primary example
has been the multicellular tumor spheroid system. The spheroid system has the
great advantage of precisely controlling the external environment while maintain-
ing the cells in a microenvironment that mimics the environment within a solid
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Figure 1. A histological cross section through the center of a
spheroid 1200 µm in diameter stained with eosin and hematoxalin,
showing the viable rim of cells (darker gray) and the necrotic center
(light gray).

tumor [2]. Suspended in culture, tumor cells aggregate and grow into a spheroid.
After initial exponential growth, further spheroid growth progressively slows and
eventually stops, even in the presence of a constant nutrient supply [3]. A typical
spheroid consists of a necrotic (dead) core surrounded by layers of quiescent (alive
but not growing, or cell-cycle arrested) and proliferating tumor cells1 [2], as shown
in Figure 1, in which one can easily distinguish the viable rim of cells surround-
ing the cellular necrotic core. It is critical to emphasize that this multicellular
tumor spheroid experimental model recapitulates all major characteristics of the
growth, composition, microenvironment, and therapeutic response of solid tumors
in humans [2].

This stage of tumor growth, or avascular tumor growth (before vessels), can
only reach a few millimeters in diameter. Angiogenesis, formation of new blood
vessels from existing blood vessels, is necessary for subsequent tumor expansion.
The healthy body controls angiogenesis through angiogenic proteins: angiogenesis
growth factors and angiogenesis inhibitors. In a tumor, excessive angiogenesis oc-
curs because of angiogenic growth factors generated by the tumor cells in response
to their stressful microenvironment. When these factors diffuse into the nearby
tissue, they bind to specific receptors on the endothelial cells of nearby pre-existing
blood vessels. The endothelial cells become activated; they proliferate and migrate
toward the tumor. Sprouting endothelial cells roll up to form a blood vessel tube.
Individual blood vessel tubes connect to form blood vessel loops that can circulate
blood. With the new supply system, the tumor will renew growth at a much faster
rate. In the metastasis phase, tumor cells use their new blood supply as highways
to travel to other parts of the body. In the invasion phase, cells detach from the
tumor mass and become motile. They invade the surrounding tissue such that no
solid boundary exists between tumor cells and normal tissue.

The desire to understand tumor biology has given rise to mathematical models
to describe the tumor development. But no mathematical models of tumor growth
yet can start from a single cell and undergo the whole process of tumor development.
Most existing models fall in three disconnected regions: avascular tumor growth,
angiogenesis, and chemotherapy for tumors with well-established vasculature.

A predictive model of avascular tumor growth has to account for the complex-
ity of these processes. Important elements that need to be incorporated in such
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a model include cell proliferation and growth, nutrient consumption and diffusion,
waste product production and diffusion, effects of growth promoting and inhibitory
factors, intercellular adhesion, and cell-environment interactions, as well as the ge-
ometry of the tumor and the cells. Most simple models of tumor growth kinetics
have relied on phenomenological curve fitting, such as the Gompertz model [4];
more sophisticated ones coupled reaction-diffusion equations governing the chemi-
cals with the tumor growth rate [5, 6, 7]. Cellular automata (CA), using a set of
oversimplified rules on a lattice, show a qualitative correspondence to real avascular
tumor growth [8].

For angiogenesis, a number of models, mainly due to Chaplain et al. [9], used
continuous equations to describe the number of vascular endothelial cells, their
interaction with the extracellular matrix, and angiogenic factors. These models re-
produced rather realistic average vasculature properties. For the effects of therapy,
models often assumed oversimplified tumor and vasculature properties and can only
treat a specific effect [10, 11, 12, 13].

The only exception is a recent model that simulate the transition from avasular
tumor growth to angiogenesis to vascular and invasive growth that employed an
adaptive finite-element method coupled to a level-set method [14]. However, some
effects including cell size changes, the mechanical deformation or compression of
cells or cell aggregates, the tumor morphology, and the effects of biochemicals,
are hard to capture with a continuous or a simple CA model. A recent model
that employs a hybrid of cellular automata for cell representation and continuous
equations for chemical and blood flow in a hexagonal grid of blood vessels represents
the state of the art in tumor growth modeling [15, 16].

In response to the lack of more biologically based models, we have developed
a hybrid, multiscale, cellular model of tumor growth [17]. The Model section de-
scribes our model in three levels: cellular, extracellular, and intracellular. Data
from experiments with multicellular spheroids were used to determine the param-
eters for the simulations. The Results section shows that, starting with a single
tumor cell, this model naturally evolves with time to produce an avascular tumor
that quantitatively mimics experimental measurements in multicellular spheroids.
In the Discussion section, we show the implications of our results. In the Outlook
section, we speculate how this multiscale model can be used to model initiation of
angiogenesis, vascular tumor growth, and effects of chemotheraphies on different
stages of tumor development.

2. Model

Our model consists of three levels: at the cellular level, a Monte Carlo model
for cell growth, death, cell cycle arrest, and cell-cell adhesion; at the extracellular:
a set of reaction-diffusion equations for chemical dynamics; and at the intracellular:
a rudimentary protein regulatory network for controlling cell cycle.

The details of the model is described in [17]. Briefly, the cellular model is
based on the successful cellular Potts model [18, 19]. In this model, lattice space
is partitioned into domains of individual cells and cell medium; pixels within each
cell have a number S, the ID number of the cell. Figure 2 shows a schematic of
the cells. Cell properties include a cell type (e.g., tumor, normal, endothelial),
adhesiveness to its neighbors, volume (typically between 125 to 250 pixels), and
growth, and metabolic rates. The total energy of the system includes the surface



4 YI JIANG

1 21 1 1
1 1 1

3

1 1
1

2
2 2 2 2

2 2 2 2 2
2 2 2

2

3 3

3 3 3

3

3 3 3 3 3
3 3 3 3

4

1 2

5

4 4 4 4
44 4 4

4 4 4 4
4 4 4 4 4

6

55
5 5

5
5

5 5 5 5 5 5
5 5

2

6 6
7

3 3
3 3 6 6

6 6
6 6 6 6

444
4

77
7 7 7 7
7 7 7 7

7
5 4

Figure 2. Schematic of the cellular model in two dimensions,
showing cells with ID numbers 1 to 7. The difference between
ID numbers corresponds to cell surface.

energy from cell-cell adhesion, elastic bulk energy from cell growth and compression
from neighbors:

(1) H =
∑

sites

Jτ(s)tau(s′)(1 − δ(s, s′)) + λv

∑

cells

(vs − Vs)
2,

where J is the coupling between cells, corresponding to the adhesive energy between
cell surfaces; τ represents cell type: cell adhesion strength is cell type dependent;
Γ is the volume constraint coefficient, corresponding to the elastic rigidity of cells;
v and V are the current cell volume and target cell volume, respectively, the latter
being the volume a cell “intends” to grow to.

The cells evolve by a Monte Carlo procedure to minimize the total energy H.
A cell grows in time until its volume reaches the target volume. Each cell also
“carries” a cell clock. Only when the cell clock reaches the cell cycle duration and
the cell volume reaches the target volume will the cell divide. The daughter cells
inherit all properties of their parent with a probability for mutation.

Cells also interact with their environment, which is characterized by local con-
centrations of biochemicals, including nutrients (oxygen and glucose), metabolic
waste (lactate), and growth promoters and inhibitors. The chemicals Ci follow the
reaction-diffusion dynamics:

(2)
∂Ci

∂t
= di∇

2Ci − ai.

Here the chemical (concentration C) diffuses with the diffusion constant d and is
consumed (or produced) at rate a; C0 is its concentration in the cell culture, kept
constant in experiments. Each cell has its own metabolic rates, which varies as it
goes through different stages of the cell cycle; thus, these metabolic rates change
both in time and space. We made a few simplifying assumptions: (1) inside the
spheroid the diffusion coefficients are constant, neglecting the differences of diffusion
rates in extracellular matrix or cells or necrotic core; and (2) each cell is chemically
homogeneous, while different cells might have different chemical concentrations;
(3) the cell culture medium outside the spheroid maintains a constant level of
metabolites, and (4) the external medium has no waste or inhibitory factors in it.
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With these assumptions, we can solve the equations on a much coarser lattice than
the lattice for cells.

The passage of a cell through its cell cycle is controlled by a series of regulatory
proteins. Since experiments suggest that more than 85% of the quiescent cells
are arrested in the G1 phase [20], in our model, the cells in their G1 phase have
the highest probability of becoming quiescent. We modeled this cell-cycle arrest
through a simplified protein regulatory network, based on the cell-cycle protein
regulatory network for Homo sapiens [21], which controls the transition between
G1 and S [17]. If the cell passes the G1-S transition checkpoint, it will most
likely proceed toward mitosis. In our model, these proteins can have only 2 levels
of expression — on and off. This Boolean network is designed to favor the cell
transition to S phase. However, concentrations of growth and inhibitory factors
directly influence the protein expression. At every time step, we calculate a local
factor level:

(3) Factor level =

(

1 + exp

[

−α

(

gF − ihF

initFG
− θ

)])

−1

,

where gF and ihF are current local concentrations of growth and inhibitory factors,
respectively — both are outputs of the extracellular chemical equations; initGF
is concentration of growth factors in the medium surrounding the aggregate; θ is
a factor level threshold; and α is a free parameter. If the factor level is above
the threshold, the protein is turned on under two circumstances: if all the links
pointing to it are stimulatory and all the proteins at the beginning of the links are
on, or if all the links are prohibitory and the proteins at the beginning of the links
are off. All other situations would turn off the protein. If the factor level is below
the threshold, this factor level is the probability that a protein will be turned on
or off — the higher the factor level (as a result of high growth factor level and low
inhibitory factor level), the higher the probability of protein being turned on or
off. If the outcome of this Boolean regulatory network is zero, the cell undergoes
cell-cycle arrest, or turns quiescent. Otherwise, it continues its transit through the
cell cycle.

Solid stress [22] and increased interstitial fluid pressure [23, 24, 25, 26] inside
a solid tumor are found to inhibit cell growth in multicellular spheroids and tumors.
To account for this pressure may have on the cell cycle, we included checkpoints
at the end of each phase of the cell cycle to determine if the cell has increased its
volume accordingly. If the cell does not increase its volume proportional to the
time it has spent in that and previous phases, it will become quiescent because of
pressure exerted by the surrounding tissue.

There are two sets of units in the model: lattice size and Monte Carlo steps
(MCS) in the cellular model and centimeters and hours in the extracellular chemical
equations. By equating a maximal cell volume in the model to a real cell size (e.g.,
4x4x4 voxel = 1.2x103 µm3), we can convert a lattice spacing to centimeters. In
addition, by equating the duration of the cell cycle in the model and in real life,
(e.g., 4 MCS = 12 hours), we have the conversion that 1 MCS is equal to 3 hours.
With these conversions, all physical parameters can be translated to our model
units, and all the model measurements can be translated into real physical units.

When a cell turns quiescent, it reduces its metabolism and stops its growth.
When a cell dies, it becomes part of the necrotic core. For a short period of time
(24 hours) after the cell dies by necrosis, the cell produces inhibitory factors and
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some waste. In spheroid experiments, it has been observed that mitotic cells are
shed from the surface of the spheroid at the constant rate per spheroid surface [27].
In our model, if a proliferating cell is at the surface of a spheroid of radius greater
than 0.03 cm [27], it can shed away with a 20% shedding probability. Shed cells
disappear from further consideration in the model.

We used parameters derived from spheroids using the mouse mammary tumor
cells, EMT6/R0, because the experimental data for this particular cell line are
abundant (e.g., [28, 29, 30, 31, 32]).

As the development of the solid tumor is dominated by cell growth and division,
as well as the response to the microenvironment, the simulation results are not
sensitive to the differences in cellular adhesion or the coupling energy coefficients
J or volume constraint coefficient γ for viable cells.

3. Discussion

We report here our multiscale model that includes cellular-level descriptions of
cell dynamics, intracellular level descriptions of cell-cycle regulatory network, and
extracellular level descriptions of chemical dynamics. In our simulations, a single
tumor cell evolves into a layered structure consisting of concentric spheres of pro-
liferating and quiescent cells at the surface and the intermediate layer respectively,
and a necrotic core at the center of the spheroid (Figure 3).

Figure 3. Snapshots of a simulated solid tumor at 2 days, 10
days, and 18 days of tumor growth from a single cell. Varying
shades of gray correspond to proliferating, quiescent, and necrotic
cells.

Figure 4 shows the comparison between the growth curves of a simulated solid
tumor and two sets of spheroid experimental data. With 0.08 mM oxygen and 5.5
mM glucose kept constant in the medium, the number of cells (Figure 4a) and the
tumor volume (Figure 4b) first grow exponentially in time for about 5–7 days. The
growth slows down, coinciding with the appearance of quiescent cells. In both the
experiments and simulations, spheroid growth saturates after around 28–30 days.
We fit both the experimental and the simulation data to a Gompertz function, in
order to objectively estimate the initial doubling times and the spheroid saturation
sizes [4]. The initial volume and cell number doubling times for the experiments and
the simulation differed by less than an hour (8.6–9.5 hours). The saturation sizes
were more different, with the simulation overestimating the experimental maximal
sizes by factors of 2 (cell number) and 2.5 (spheroid volume). Given that the
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simulation covered a range of spheroid growth of 4–5 orders of magnitude, this
agreement with experiment is excellent.
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Figure 4. The growth curves of a spheroid with 0.08 mM O2
and 5.5 mM glucose in the medium: (a) the number of cells and
(b) the volume of spheroid in time. The solid diamonds and stars
are experimental data for EMT6/Ro; the circles are simulation
results. The solid lines are the best fit with a Gompertz function
for experimental data.

Experimentally, the fraction of cells in the various cell-cycle phases was de-
termined by standard flow cytometric measurement of cellular DNA content as
described in detail previously [29]. Solid symbols in Figure 5 are experimental
measurements of cell cycle fraction for G1, S and G2 phases [33]. Open symbols
are simulation data. We see in both experimental and simulation data that as the
spheroid radius increases, the fraction of cells in G1 phase increases, at the same
time the fraction of cells in S phase drops at comparable rate. Percent of cells in
G2 phase remains roughly constant through out the spheroid growth. The simu-
lation data showed an initially high degree of variability, mostly accounted for by
the non-random distribution of the initial aggregate and the discrete time sampling
involved.

In order to test the robustness of our model, we kept all the parameters in
the model fixed at the values determined to produce the best fit to the growth of
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Figure 5. The cell cycle fraction distribution of a spheroid with
0.08 mM O2 and 5.5 mM glucose in the medium. Solid symbols
are experimental data for EMT6/Ro. Open symbols are simulation
results.

spheroids in 0.08 mM oxygen and 5.5 mM glucose. We then varied only the nutri-
ent concentrations in the medium, as was done in previous spheroid experiments.
Our simulations still showed good agreement between simulation and experimental
growth curves when the external conditions were changed to 0.28 mM O2 and 16.5
mM glucose in the medium.

Our simulations result in a set of conditions for the cell to undergo necrosis:
oxygen concentration below 0.02 mM, glucose concentration below 0.06 mM, and
waste (lactate) concentration above 8 mM. While it has been shown that cells
can survive these nutrient/waste concentrations individually, there are currently
no experimental data available on the effects of combined exposure to these mi-
croenvironmental conditions. These simulation results suggest that cells are able
to survive even in a very nutrient-deprived environment. These predictions can be
tested experimentally only if chemical concentrations in the spheroid microenviron-
ment can be systematically measured, which is difficult using currently available
techniques such as microelectrodes [32] or bioluminescence [34].

The diffusion coefficients for the growth promoters and inhibitors are found to
be in the order of 10−7 and 10−6 cm2/hr, respectively. This diffusion constant
range is on the order of that for peptide growth and inhibitory factors known
to regulate cellular proliferation (e.g., epidermal growth factor, fibroblast growth
factor, tumor necrosis factor, and tumor growth factor β) based on extrapolation
from previous measurements in spheroids [35]. Thus, the model predicts that
cellular proliferation in this system is regulated by a combination of limited growth
promoters and internally produced growth inhibitors. Interestingly, previous work
by Freyer et al. [36] has shown that a peptide inhibitory factor was produced by the
necrotic regions of spheroids and that this inhibitory factor was 80–90 kD, which
would have a predicted diffusion constant of 1 × 10−7cm2/hr in spheroids.

It is somewhat surprising that the simplified protein regulatory network that
controls cell-cycle arrest in our model could produce such a good match to the
spheroid data. This result supports the idea that proliferation arrest is regulated
by the induction of a few specific proteins, which act primarily in the G1-phase
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of the cell cycle. The current model is entirely consistent with the recent work by
our group showing that G1-specific CKIs are induced, and actively inhibit their
target CDKs, relatively close to the spheroid surface [20]. Our modeling results
also suggest that microenvironmental induction of growth arrest is not caused by
restrictions on volumetric expansion of the spheroid. Even though the model in-
corporates such a mechanism for cell cycle arrest, the results predict that arrest
is actually caused by the induction of G1-phase regulatory proteins. It is impor-
tant to note that restricted volumetric growth may be an important consideration
when spheroids, or nodular tumors, are surrounded by a semirigid matrix [22]. Our
model can be further refined to include other regulatory pathways, such as the S-
and G2-phase arrest, as well as to provide a finer degree of protein regulation than
the on-off Boolean logic used in the current version.

4. Outlook

Despite the success of this model, we have so far only described the first phase
of tumor development, the initial avascular growth. The clinically detectable tu-
mors, typically 1–2 mm in diameter, are near growth saturation, when many of
the cellular and microenvironmental perturbations that drive tumor progression,
including alterations in metabolism, gene, and protein expression and proliferation
arrest, have maximal effects. Furthermore, angiogenesis is necessary for a tumor
to grow beyond saturation. A predictive model of tumor growth must cover longer
times and length scales.

We are currently expanding the model to simulate the initiation of angiogenesis.
Additional ingredients to the avascular tumor growth model described above include
vascular endothelial cells, their interaction with the local angiogenic signal — in
particular the vascular endothelial growth factor (VEGF) generated by the tumor
— and their interaction with the extracellular matrix among the tissue between the
blood vessel and the tumor.

The vascular endothelial cells would not only increase proliferation, decrease
apoptosis rate, but also migrate towards the higher concentration of the VEGF
signal (or chemotaxis) [37]. In our model, we do not consider endothelial cell
death. The endothelial chemotaxis is modeled with an effective chemical potential
term in the total energy:

(4) H =
∑

sites

Jτ(s)tau(s′)(1 − δ(s, s′)) + λv

∑

cells

(vs − Vs)
2 +

∑

cells

µCc,

where µ is the chemical potential corresponding to the cell’s capability to follow a
chemical gradient or chemotaxis, and Cc is the local concentration of the chemo-
attractant. When the cellular model minimizes the total energy, the cells would
move toward higher values of C if µ is negative. The dynamics of VEGF is similar
to those of the chemicals in the above avascular model, the only difference being
that VEGF also decays in time and the source of VEGF is localized at the tumor.

Collagens are the major proteins of the ECM [38]. The family of collagen
molecules are typically long ( 300 nm), thin ( 1.5 nm) fibers [39]. We model the
extracellular matrix as a matrix of fibers (see Fig. 4(a)). They are a special “cell”
with a target volume and rigidity, as well as a adhesion coupling with the cells.
The interstitial fluid between the fibers are treated as another special ”cell” with
its target volume and rigidity. The space occupied by interstitial fluid is more
deformable than the fibers and is more easily ”invaded” by the expanding and
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(a)

(b)

Figure 6. Simulation of two dimensional angiogenesis. The left
edge of the simulation domain is the blood vessel wall, while the
right edge is the source of VEGF. The endothelial sprout initially
consists of two endothelial cells (dark gray). Endothelial cells grow
and migrate in the normal tissue consists of normal cells (gray
squares), matrix fibers and interstitial fluids (light gray). (a) Initial
condition at time 0. (b) At about 5 days.

migrating endothelial cells. Normal tissue cells occupy around 12.5% of space.
When growing endothelial sprout compresses the normal cells, they can undergo
apoptosis and become part of the interstitial fluid.

The interactions between the endothelial cells and the extracellular matrix con-
tain two aspects. One involves the active role of the endothelial cells in modifying
the local fibronectin concentration and re-organizing the fiber structure; the other
is the passive role of the endothelial cells by haptotaxis or the cells’ response in a
gradient of adhesion from the gradient of fibronectin density. We treat the former
by a set of local rules for endothelial cells: if the matrix element around the cell
is lower than a threshold—matrix density too low, the cell secretes a fixed amount
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of matrix; if the matrix element around the cell is higher than another threshold—
matrix density too high, the cell secretes an enzyme that degrades the local matrix
fibers. Haptotaxis in this model comes through the different coupling constants J
in the first term of total energy.

It has been established that endothelial cells either migrate or divide, but not
both [9]. We treat the endothelial sprout tip as a group of cells that only migrate
but do not proliferate. Cell division is largely confined to a region just behind the
cluster of cells that constitute the sprout tip. This division region, however, has
not been generally agreed on. Evidence also pointed to ” some cell-wide distances
behind, particularly at the base of the sprout. [40, 41]. We shall explore different
possibilities and their effects on angiogenesis.

Additional considerations that could be added to the model are intracellular
regulations for endothelial cells, and the active role of matrix in storing and re-
leasing VEGF. Our preliminary results (Figure 4) have shown that this method for
simulating angiogenesis is promising.

In addition, we also embed blood vessels into the tumor to study the vascular
tumor growth as well as the effects of chemotherapy on vascular tumor growth. This
multiscale approach, combined with the extant data, will help construct anatom-
ically accurate models of a tumor and its vascular system. If successfully imple-
mented, the model can guide experimental design and interpretation. Continuously
revised by new information, the final model could potentially enable us to assess
tumor susceptibility to multiple therapeutic interventions, improve understanding
of tumor biology, better predict and prevent tumor metastasis, and ultimately in-
crease patient survival.
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